วันพุธที่ 18 พฤศจิกายน พ.ศ. 2552

การใช้ดาวเทียมสื่อสาร

หลักการพื้นฐานของการใช้ดาวเทียมสื่อสาร แสดงในรูปที่ 1
รูปที่ 1 แสดงระบบดาวเทียมสื่อสาร
ระบบนี้ใช้ความถี่ย่าน SHF ทั้งสองทิศทาง(สัญญาณขาขึ้นและขาลง) ทำให้ชั้นไอโอโนสเฟียร์ไม่มีผลต่อคลื่นวิทยุในงานความถี่ขนาดนี้ และคลื่นค่อนข้างเดินทางเป็นเส้นตรง วิธีสื่อสารชนิด นี้ถูกนำไปใช้ในระบบโทรศัพท์แบบมัลติแชนแนล สำหรับระยะหลายพันกิโลเมตร โดยให้ประสิทธิภาพของระบบสูงมาก

ที่มา http://kmitnb05.kmitnb.ac.th/~mte98012/Chapter11.htm

วิถีการโคจรของดาวเทียมสื่อสาร

วิถีการโคจร ดาวเทียมสื่อสารโคจรเป็นวงกลมในแนวระนาบกับเส้นศูนย์สูตร หรือที่เรียกว่า "วงโคจรค้างฟ้า (Geostationary Orbit)"
ประโยชน์ที่ได้รับ ด้านการติดต่อสื่อสารโทรคมนาคมทางด้านต่างๆ เช่น ทางด้านสัญญาณโทรทัศน์ สัญญาณโทรศัพท์ ข้อมูลคอมพิวเตอร์
ตัวอย่างดาวเทียมสื่อสาร ดาวเทียม Thaicom 1 และ 2 เป็นดาวเทียมสื่อสารชุดแรกของประเทศไทย ถูกส่งขึ้นไปโคจรในปี พ.ศ. 2536 และ 2537 ตามลำดับ เพื่อให้บริการทางด้านการสื่อสารมีรัศมีการให้ บริการครอบคลุมทั่วทั้งประเทศไทย และภูมิภาคใกล้เคียง


ดาวเทียม Thaicom 3 เป็นดาวเทียมสื่อสารอีกดวงหนึ่งของประเทศไทย ถูกส่งขึ้นไปโคจรในปี พ.ศ. 2540 เพื่อให้บริการทางด้านการสื่อสาร มีรัศมีการให้บริการครอบคลุมทั่วทั้ง 4 ทวีป

วิธีการทำงานของดาวเทียมสื่อสาร

ดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา เรียกได้ว่าทำงานตลอด 24 ชม. ไม่มีวันหยุด เพื่อที่จะเชื่อมโยงเครือข่ายการสื่อสารของโลกเข้าไว้ด้วยกัน นับตั้งแต่ NASA ส่งดาวเทียมสื่อสารเข้าสู่วงโคจรไป จนปัจจุบันมีบริษัทเอกชนจำนวนมากที่เข้ามาบุกเบิกธุรกิจ และทำกำไรมหาศาล จากประโยชน์ต่างๆ ที่ได้จากดาวเทียม ดาวเทียมสื่อสารเมื่อถูกส่งเข้าสู่วงโคจร มันก็พร้อมที่จะทำงานได้ทันที มันจุส่งสัญญาณไปยังสถานีภาคพื้นดิน สถานีภาคพื้นดินจะรับสัญญาณโดยใช้อุปกรณ์ ที่เรียกว่า "Transponder" ซึ่งเป็นอุปกรณ์ที่ทำหน้าที่พักสัญญาณ แล้วกระจายสัญญาณไปยังจุดรับสัญญาณต่างๆ บนพื้นโลก ดาวเทียมสื่สารสามารถส่งผ่านสัญญาณโทรศัพท์ ข้อมูลต่างๆ รวมถึงสัญญาณภาพโทรทัศน์ได้ไปยังทุกหนทุกแห่ง
วิธีการทำงาน เนื่องจากดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา ไม่มีการหยุด ดาวเทียมสื่อสารจึงถูกออกแบบมาเป็นอย่างดี ให้สามารถใช้งานในอวกาศได้ประมาณ 10 - 15 ปี โดยที่ดาวเทียมต้องสามารถโคจร และรักษาตำแหน่งให้อยู่ในตำแหน่งที่ถูกต้องได้ตลอดเวลา ดาวเทียมสื่อสารทำงานโดยอาศัยหลักการส่งผ่านสัญญาณถึงกันระหว่างสถานีภาคพื้นดินและ ดาวเทียม ซึ่งมีการทำงาน ดังนี้
1. ภาคอวกาศ (Space Segment) ประกอบด้วยตัวดาวเทียม ซึ่งมีส่วนประกอบที่สำคัญ ดังนี้
1.1 ระบบขับเคลื่อนตัวดาวเทียม (Propulsion Subsystem) โดยจะใช้ก๊าซ หรือพลังงานความร้อนจากไฟฟ้าเพื่อให้เกิดแรงผลักดัน หรือแรงกระตุ้นเพื่อให้เกิดการหมุนและรักษาตำแหน่งของดาวเทียม
1.2 ระบบควบคุมตัวดาวเทียม (Spacecraft Control Subsystem) เพื่อรักษาสมดุลในการทรงตัวของดาวเทียมเพื่อไม่ให้ดาวเทียมหลุดลอย ไปในอวกาศหรือถูกแรงดึงดูดของโลกดึงให้ตกลงมาบนพื้นโลก
1.3 ระบบอุปกรณ์สื่อสาร (Electronic Communication Subsystem) เนื่องจากดาวเทียมสื่อสารส่วนใหญ่จะมีทรานสปอนเดอร์ (Transponder) หรือช่องสัญญาณดาวเทียมทำหน้าที่รับสัญญาณจากสถานีส่งภาคพื้นดินแล้วแปลงความถี่ของสัญญาณดังกล่าวให้เป็นความถี่ขาลง (Downlink Frequency) พร้อมทั้งขยายสัญญาณดังกล่าวเพื่อให้สามารถส่งกลับสู่สถานีภาคพื้นดินได้
1.4 ระบบพลังงานไฟฟ้า (Electrical Power Subsystem) ดาวเทียมสื่อสารทุกดวงจะมีแผงเซลล์ไฟฟ้าพลังงานแสงอาทิตย์ ทำหน้าที่เปลี่ยนพลังงานแสงอาทิตย์ให้เป็นพลังงานไฟฟ้าสำหรับอุปกรณ์สื่อสาร และภาคควบคุมต่างๆ บนดาวเทียม นอกจากนี้ยังทำหน้าที่เก็บพลังงานไฟฟ้าไว้ในตัวเก็บประจุไฟฟ้า (Battery) เพื่อสำรองไว้ใช้งานอีกด้วย
1.5 ระบบสายอากาศ (Antenna Subsystem) จานสายอากาศบนตัวดาวเทียม จะทำหน้าที่รับสัญญาณจากสถานีภาคพื้นดิน โดยใช้จานสายอากาศส่วนใหญ่เป็นแบบ Paraboloid มีการส่ง สัญญาณเป็นชนิดที่มีการกำหนดทิศทาง (Directional Beam)
1.6 ระบบติดตามและควบคุม (TT&C Telemetry Tracking and Command Subsystem) ใช้ติดตามการทำงานของดาวเทียมและควบคุมรักษาตำแหน่งของดาวเทียมให้โคจรอยู่ในตำแหน่งที่ถูกต้อง เสมอ จากสถานีควบคุมภาคพื้นดิน (Master Earth Station)
2. ภาคพื้นดิน (Ground Segment) : สถานีดาวเทียมภาคพื้นดิน (Satellite Earth Station) ประกอบด้วย 4 ส่วนหลัก ๆคือ
2.1 อุปกรณ์จานสายอากาศ (Antenna Subsystem) ต้องมีความสามารถในการรวมพลังงานไปในทิศทางที่ตรงกับดาวเทียม และต้องมีความสามารถในการรับสัญญาณจากดาวเทียมได้
2.2 ภาคอุปกรณ์สัญญาณวิทยุ (Radio Frequency Subsystem) ทำหน้าที่รับส่งสัญญาณความถี่วิทยุที่ใช้งานเป็นหลัก
2.3 ภาคอุปกรณ์แปลงสัญญาณวิทยุ (RF/IF Subsystem) ประกอบด้วย
1) Up Converter Part ทำหน้าที่แปลงย่านความถี่ IF ซึ่งรับจาก Satellite Modem ให้เป็นความถี่ย่านที่ใช้งานกับระบบดาวเทียมต่าง ๆ จากนั้นส่งสัญญาณที่แปลงความถี่แล้วไปให้ภาคขยายสัญญาณย่านความถี่สูง เพื่อส่งสัญญาณไปยังดาวเทียม
2) Down Converter Part ทำหน้าที่แปลงความถี่ของสัญญาณ ที่ได้รับจากดาวเทียมในย่านความถี่ของดาวเทียมไปเป็นความถี่ย่านIF เพื่อส่งต่อให้แก่ภาค Demodulator ของ Satellite Modem
2.4 อุปกรณ์ Modem (Modulator / Demodutator) ทำหน้าที่แปลงข้อมูลที่ต้องการส่งผ่านระบบสื่อสารผ่านดาวเทียมให้อยู่ในรูปของ สัญญาณคลื่นวิทยุที่มีข้อมูลผสมอยู่ให้ได้เป็นข้อมูลที่สามารถนำไปใช้งานต่อไป

ที่มา : http://www.cmw.ac.th/elibrary/fileselibrary/Science/oraphin005/section1_p04.html

ดาวเทียมสื่อสาร

ดาวเทียมสื่อสาร
ดาวเทียมสื่อสารจะทำหน้าที่ถ่ายทอดทวนสัญญาณ (Repeater) ไปยังสถานีภาคพื้นดินที่ทำการส่งและรับสัญญาณ การส่งสัญญาณจะใช้ความถี่คลื่นไมโครเวฟจากสถานีภาคพื้นดินที่ส่งสัญญาณขาขึ้นหรือ "Up-Link" โดยจานรับสัญญาณบนตัวดาวเทียม จะรับคลื่นสัญญาณข้อมูลภาพและเสียงไว้ แล้วนำไปขยายให้มีความแรงของสัญญาณมากขึ้น หลังจากนั้นค่อยส่งกลับลงมายังสถานีภาคพื้นดินหรือ "Down-Link"
การเชื่อมโยงสัญญาณผ่านดาวเทียม

ดาวเทียม Echo 1
ดาวเทียมสื่อสารเป็นดาวเทียมประเภทแรกที่ใช้เพื่อการพาณิชย์ (Commercial Satellites) โดยดาวเทียมสื่อสารดวงแรกของโลกคือ ดาวเทียม Echo 1 สร้างโดยองค์การบริหารการบินและอวกาศแห่งชาติสหรัฐอเมริกา (NASA) ซึ่งถูกส่งขึ้นไปยังวงโคจรนอกโลกในปี พ.ศ. 2503 ดาวเทียมนี้มีลักษณะเป็นบอลลูนกลม คลุมด้วยอลูมินัม ซึ่งเป็นดาวเทียมที่ไม่มีอัตราการขยายของสัญญาณ โดยจะอาศัยการสะท้อนของสัญญาณวิทยุ ที่ตกกระทบลงบนผิวของบอลลูน และสะท้อนกลับมายังโลก
ดาวเทียม Echo 1

ดาวเทียมอินเทลแซท 8
ดาวเทียวอินเทลแซท 8 (INTELSAT VIII) คือ ดาวเทียมรุ่นล่าสุดของอินเทลแซท ได้รับการออกแบบมา เพื่อเพิ่มประสิทธิภาพในการใช้งานช่องสัญญาณย่านความถี่ซี - แบนด์ สำหรับการบริการต่างๆ ของอินเทลแซท เช่น เครือข่ายโทรศัพท์สาธารณะ, การประยุกต์ใช้งานสื่อสารข้อมูลภาพ และเสียงระหว่างประเทศ
ดาวเทียมอินเทลแซท 8
สำหรับประเทศไทยได้เข้าเป็นสมาชิกขององค์การอินเทลแซท เมื่อเดือนพฤษภาคม พ.ศ. 2509 เป็นสมาชิกลำดับที่ 49 เพื่อขอใช้บริการผ่านดาวเทียมอินเทลแซท โดยการสื่อสารแห่งประเทศไทย ได้สร้างสถานีดาวเทียมภาคพื้นดิน ที่อำเภอศรีราชา จังหวัดชลบุรี เพื่อติดต่อสื่อสารกับสถานีดาวเทียมภาคพื้นดินในประเทศอื่น
ดาวเทียมสื่อสารของประเทศไทย
ปัจจุบันนี้ประเทศไทยมีดาวเทียมสื่อสารแห่งชาติเป็นของตนเอง นั้นคือ ดาวเทียมไทยคม ซึ่งดำเนินงานโดย บริษัท ชินเซทเทลไลท์ จำกัด (มหาชน) และขณะนี้มีจำนวนทั้งสิ้น 3 ดวงได้แก่
ดาวเทียมไทยคม 1A ถูกส่งขึ้นสู่วงโคจรเมื่อวันที่ 17 ธันวาคม 2536
ดาวเทียมไทยคม 2 ถูกส่งขึ้นสู่วงโคจรเมื่อวันที่ 7 ตุลาคม 2537
ดาวเทียมไทยคม 3 ถูกส่งขึ้นสู่วงโคจรเมื่อวันที่ 16 เมษายน 2540
ดาวเทียมไทยคมทั้ง 3 ดวง เป็นดาวเทียมสื่อสารที่มีบทบาทสำคัญ ในการพัฒนาเครือข่ายการสื่อสารของประเทศไทย ให้มีเทคโนโลยีรุดหน้าทัดเทียมกับประเทศต่างๆ อีกทั้งยังช่วยตอบสนองการใช้งานด้านการสื่อสารโทรคมนาคม และการกระจายเสียงโทรทัศน์ของประเทศไทยที่มีการขยายตัวเพิ่มขึ้นอย่างรวดเร็ว

ที่มา : http://www.tlcthai.com/webboard/view_topic.php?table_id=1&cate_id=20&post_id=4695

ประวัติดาวเทียมสื่อสาร


ประวัติ
ดาวเทียมสื่อสารที่ส่งขึ้นไปครั้งแรกเมื่อปี 2508 โดยองค์การโทรคมนาคม ผู้ที่ริเริ่มแนวคิดการสื่อสารดาวเทียมคือ อาเธอร์ ซี คลาร์ก (Arthur C. Clarke) นักเขียนนวนิยายและสารคดีวิทยาศาสตร์ผู้มีชื่อเสียงปลายคริสต์ศตวรรษที่ 20 เขาสร้างจินตนาการการสื่อสารดาวเทียมให้เรารับรู้ตั้งแต่ปี ค.ศ. 1945 โดยเขียนบทความเรื่อง "Extra Terrestrial Relay" ในนิตยสาร Wireless World ฉบับเดือน ตุลาคม 1945 ซึ่งบทความนั้นได้กล่าวถึงการเชื่อมระบบสัญญาณวิทยุจากมุมโลกหนึ่งไปยังอีกมุมโลกหนึ่ง ให้สามารถติดต่อสื่อสารกันได้ตลอด 24 ชั่วโมง โดยใช้สถานีถ่ายทอดวิทยุที่ลอยอยู่ในอวกาศเหนือพื้นโลกขึ้นไปประมาณ 35,786 กิโลเมตร จำนวน 3 สถานี
ในวันที่ 4 ตุลาคม ค.ศ. 1957 ข้อคิดในบทความของอาร์เธอร์ ซี คลาร์ก เริ่มเป็นจริงขึ้นมาเมื่อสหภาพโซเวียตได้ส่งดาวเทียม
สปุตนิก ซึ่งเป็นดาวเทียมดวงแรกของโลกได้สำเร็จ ต่อมาเมื่อวันที่ 18 ธันวาคม ค.ศ. 1958 สหรัฐอเมริกาได้ส่งดาวเทียมเพื่อการสื่อสารดวงแรกที่ชื่อว่า สกอร์ (Score) ขึ้นสู่อวกาศ และได้บันทึกเสียงสัญญาณที่เป็นคำกล่าวอวยพรของประธานาธิบดีโอเซนฮาร์ว เนื่องเทศกาลคริสต์มาสจากสถานีภาคพื้นดินแล้วถ่ายทอดสัญญาณจากดาวเทียมลงมาสู่ชาวโลก นับเป็นการส่งวิทยุกระจายเสียงจากดาวเทียมภาคพื้นโลกได้เป็นครั้งแรก
วันที่ 20 สิงหาคม ค.ศ. 1964 ประเทศสมาชิกสหภาพโทรคมนาคมระหว่างประเทศ (ITU) จำนวน 11 ประเทศ ร่วมกันจัดตั้งองค์การโทรคมนาคมทางดาวเทียมระหว่างประเทศ หรือเรียกว่า “
อินเทลแซท” (INTELSATINTERNATIONAL TELECOMMUNICATIONS SATELLITE ORGANIZATION) ขึ้นที่กรุงวอชิงตันดี.ซี. สหรัฐอเมริกา โดยให้ประเทศสมาชิกเข้าถือหุ้นดำเนินการใช้ดาวเทียมเพื่อกิจการโทรคมนาคมพานิชย์แห่งโลก INTELSAT ตั้งคณะกรรมการ INTERIM COMMUNICATIONS SATELLITE COMMITTEE (ICSC) จัดการในธุรกิจต่าง ๆ ตามนโยบายของ ICSC เช่นการจัดสร้างดาวเทียมการปล่อยดาวเทียมการกำหนดมาตราฐานสถานีภาคพื้นดิน การกำหนดค่าเช่าใช้ช่องสัญญาณดาวเทียม เป็นต้น
วันที่ 10 ตุลาคม ค.ศ. 1964 ได้มีการถ่ายทอดโทรทัศน์พิธีเปิดงานกีฬา
โอลิมปิกครั้งที่ 18 จากกรุงโตเกียว ผ่านดาวเทียม “SYNCOM III” ไปสหรัฐอเมริกานับได้ว่าเป็นการถ่ายทอดสัญญาณโทรทัศน์ผ่านดาวเทียมครั้งแรกของโลก
วันที่ 6 เมษายน ค.ศ. 1965 COMSAT ส่งดาวเทียม “TELSAT 1” หรือในชื่อว่า EARLY BIRD ส่งขึ้นเหนือ
มหาสมุทรแอตแลนติก ถือว่าเป็นดาวเทียมเพื่อการสื่อสาร เพื่อการพานิชย์ดวงแรกของโลก ในระยะหลังมีหลายประเทศที่มีดาวเทียมเป็นของตนเอง (DOMSAT) เพื่อใช้ในการสื่อสารภายในประเทศ

วันพฤหัสบดีที่ 12 พฤศจิกายน พ.ศ. 2552

ประวัติดาวเทียมไทยคม

ดาวเทียมไทยคม

บริษัท ชินแซทเทลไลท์ จำกัด (มหาชน) ปี 2534 บริษัท ชินวัตรคอมพิวเตอร์ แอนด์ คอมมิวนิเคชั่นส์ จำกัด (มหาชน) ได้รับสัมปทานโครงการดาวเทียมสื่อสารแห่งชาติของกระทรวงคมนาคมเป็นเวลา 30 ปี โดยได้รับ การคุ้มครองสิทธิเป็นเวลา 8 ปี ในการนี้พระบาทสมเด็จพระเจ้าอยู่หัวฯได้พระราชทานนามดาวเทียมของ โครงการอย่างเป็นทางการว่า "ไทยคม" (THAICOM) เพื่อเป็นสัญลักษณ์เชื่อมโยงประเทศไทย กับเทคโนโลยี สื่อสารใหม่ และในปีเดียวกันกลุ่มชินวัตรได้จัดตั้ง บริษัท ชินวัตรแซทเทลไลท์ จำกัดเพื่อดำเนินการโครงการ โดยทำหน้าที่จัดสร้างจัดส่งดาวเทียมขึ้นสู่วงโคจร ให้บริการช่องสัญญาณดาวเทียมและบริหารโครงการ ดาวเทียมไทยคมตลอดอายุสัมปทาน นอกจากนี้บริษัทฯ ได้จดทะเบียนเข้าเป็นบริษัทในตลาดหลักทรัพย์ ในวันที่ 18 มกราคม 2537 และ ต่อมาในปี 2542 บริษัท ชินวัตรแซทเทลไลท์ จำกัด (มหาชน)ได้เปลี่ยน ชื่อเป็น "บริษัท ชินแซทเทลไลท์ จำกัด (มหาชน)" ปัจจุบันบริษัทฯ ประสบความสำเร็จในการจัดส่งดาวเทียม ไทยคม 1A, 2 และ 3 เข้าสู่วงโคจรในปี 2536, 2537, และ 2540 ตามลำดับ โดยดาวเทียมไทยคม 1A และ2 ซึ่งเป็นดาวเทียมรุ่นHS-376 สามารถให้บริการของช่องสัญญาณจำนวน 28 ทรานสพอนเดอร์แบ่งเป็นย่าน ความถี่ C-Band 22 ทรานสพอนเดอร์และ Ku-Band 6 ทรานสพอนเดอร์ ดาวเทียมไทยคม 3 ถูกส่งขึ้นสู่วงโคจรอวกาศเมื่อวันที่ 16 เมษายน 2540 ดาวเทียมไทยคม 3 เป็น ดาวเทียมรุ่น Spacebus-3000A ซึ่งมีขนาดใหญ่และกำลังส่งสูงมาก ประกอบด้วยช่องสัญญาณย่านความถี่ C-Band จำนวน 25ทรานสพอนเดอร์ มีพื้นที่บริการครอบคลุมสี่ทวีป คือเอเชีย ยุโรป ออสเตรเลีย และแอฟริกานอกจากนี้ยังมีช่องสัญญาณย่าน ความถี่ Ku-Band 14 ทรานสพอนเดอร์ โดยแบ่งเป็น Fix Spot Beam ซึ่งมีพื้นที่บริการครอบคลุมประเทศ ไทยและประเทศในภูมิภาพอินโดจีน SteerableSpot Beam ครอบคลุมพื้นที่ประเทศอินเดีย

ประโยชน์ของดาวเทียมไทยคม ดาวเทียมไทยคมมีข้อได้เปรียบกว่าดาวเทียมดวงอื่นๆ ที่ประเทศไทยใช้อยู่คือ มีความแรงของสัญญาณเหมาะสมกับประเทศไทยเป็นพิเศษ และเป็นดาวเทียมดวงเดียวในภูมิภาคนี้ที่มีความถี่ย่าน Ku-Band ประโยชน์ของดาวเทียมไทยคม แบ่งได้ดังนี้
ด้านโทรทัศน์ สถานีแม่ข่ายสามารถส่งรายการผ่านดาวเทียม ไปยังสถานีเครือข่ายหรือสถานีทวนสัญญาณ เพื่อออกอากาศแพร่ภาพต่อในเขตภูมิภาค สามารถทำการถ่ายทอดสดผ่านดาวเทียมได้โดยอุปกรณ์เคลื่อนที่ ด้านวิทยุกระจายเสียง สามารถถ่ายทอดสัญญาณไปมาระหว่างสถานีวิทยุจากภูมิภาคที่ห่างไกลกัน เพื่อรวบรวมข่าวสาร รวมทั้งแพร่สัญญาณถ่ายทอดต่อ ณ สถานีทวนสัญญาณ ด้านโทรศัพท์ สามารถเชื่อมโยงเครือข่ายโทรศัพท์จากชุมสายต่างๆ เข้าด้วยกัน สามารถใช้อุปกรณ์ที่มีขนาดเล็ก เพื่อเชื่อมโยงพื้นที่ห่างไกลเข้ากับเครือข่ายโทรศัพท์ ทำให้การสื่อสารสะดวก สามารถส่งผ่านได้ทั้งข้อมูล เสียง และภาพ

ลักษณะและการใช้งานของดาวเทียมไทยคม

ลักษณะและการใช้งาน
ปัจจุบัน ดาวเทียมไทยคม มีทั้งหมด 5 ดวง ใช้งานได้จริง 4 ดวง โดย 3 ใน 4 ดวงเป็นการใช้งานหลังหมดอายุที่คาดการณ์
ไทยคม 1

ไทยคม 1A ดาวเทียมดวงแรกของประเทศไทย เป็นดาวเทียมรุ่น HS-376 สร้างโดย Huges Space Aircraft (บริษัทลูกของ โบอิง) โคจรบริเวณพิกัดที่ 120 องศาตะวันออก ส่งขึ้นสู่วงโคจรเมื่อ 17 ธันวาคม พ.ศ. 2536 มีอายุการใช้งานประมาณ 15 ปี (ถึง พ.ศ. 2551)
เดิมดาวเทียมดวงนี้อยู่ที่พิกัด 78.5 องศาตะวันออก เรียกชื่อว่า ไทยคม 1 เมื่อย้ายมาอยู่ที่ 120 องศาตะวันออก เมื่อเดือนมิถุนายน พ.ศ. 2540 จึงเรียกชื่อใหม่ว่า "ไทยคม 1A"

ไทยคม 2
ไทยคม 2 ดาวเทียมดวงที่สองของประเทศไทย เป็นดาวเทียมรุ่น HS-376 เช่นเดียวกับ ไทยคม 1A โคจรบริเวณพิกัดที่ 78.5 องศาตะวันออก ส่งขึ้นสู่วงโคจรเมื่อ 7 ตุลาคม พ.ศ. 2537 มีอายุการใช้งานประมาณ 15 ปี (ถึง พ.ศ. 2552)

ไทยคม 3
ไทยคม 3 เป็นดาวเทียมรุ่น Aerospatiale SpaceBus 3000A โคจรบริเวณพิกัดเดียวกับ ไทยคม 2 คือ 78.5 องศาตะวันออก มีพื้นที่การให้บริการ (footprint) ครอบคลุมพื้นที่มากกว่า 4 ทวีป สามารถให้บริการในเอเซีย ยุโรป ออสเตรเลีย และแอฟริกา และถ่ายทอดสัญญาณโทรทัศน์ตรงถึงที่พักอาศัยหรือ Direct-to-Home (DTH) ในประเทศไทยและประเทศเพื่อนบ้าน ส่งขึ้นสู่วงโคจรเมื่อ 16 เมษายน พ.ศ. 2540 มีอายุการใช้งานประมาณ 14 ปี แต่ปลดระวางไปเมื่อเดือนตุลาคม พ.ศ. 2549 เนื่องจากมีปัญหาเรื่องระบบไฟฟ้า

ไทยคม 4

ไทยคม 4 หรือ ไอพีสตาร์ เป็นดาวเทียมรุ่น LS-1300 SX สร้างโดย Space System/Loral พาโล อัลโต สหรัฐอเมริกา เป็นดาวเทียมดวงแรกที่ออกแบบมาเพื่อให้บริการอินเทอร์เน็ตความเร็วสูง ที่ความเร็ว 45 Gbps เป็นดาวเทียมสื่อสารเชิงพาณิชย์ที่มีขนาดใหญ่ และมีน้ำหนักมากถึง 6486 กิโลกรัม และทันสมัยที่สุดในปัจจุบัน ส่งขึ้นสู่วงโคจรเมื่อ 11 สิงหาคม พ.ศ. 2548 มีอายุการใช้งานประมาณ 12 ปี

ไทยคม 5
ไทยคม 5 เป็นดาวเทียมรุ่น Aerospatiale SpaceBus 3000A (รุ่นเดียวกับไทยคม 3) สร้างโดย Alcatel Alenia Space ประเทศฝรั่งเศส มีน้ำหนัก 2800 กิโลกรัม มีพื้นที่การให้บริการครอบคลุมพื้นที่ 4 ทวีป ใช้เป็นดาวเทียมสำหรับการถ่ายทอดสัญญาณโทรทัศน์ตรงถึงที่พักอาศัยหรือ Direct-to-Home (DTH) และการถ่ายทอดสัญญาณโทรทัศน์ดิจิตอลความละเอียดสูง (High Definition TV) ส่งขึ้นสู่วงโคจรเมื่อ 27 พฤษภาคม พ.ศ. 2549 เพื่อทดแทนไทยคม 3











ดาวเทียมไทยคมดาวเทียมดวงแรกของไทย



ดาวเทียมไทยคมดาวเทียมดวงแรกของไทย
18 ธันวาคม พ.ศ. 2536 ดาวเทียมไทยคม (THAICOM) ดาวเทียมดวงแรกของไทย ถูกส่งขึ้นวงโคจร จากฐานส่งของบริษัท แอเรียนสเปซ (Arianespace) แห่งฝรั่งเศส ที่เมืองคูรู (Kourou) ประเทศเฟรนช์ เกียนา (French Guiana) ทวีปอเมริกาใต้ โดยพระบาทสมเด็จพระเจ้าอยู่หัว ได้รับพระราชทานชื่อ “ไทยคม” เมื่อวันที่ 17 ธันวาคม 2534 โดยมาจากคำว่า ไทยคม (นาคม) สร้างโดยบริษัท ฮิวจ์ แอร์คราฟท์ (Hughes Aircraff) สหรัฐอเมริกา สามารถถ่ายทอดได้ทั้งสัญญาณโทรทัศน์ วิทยุกระจายเสียง โทรศัพท์ และการสื่อสารข้อมูล ต่อมาได้ชื่อใหม่เป็น “ดาวเทียมไทยคม 1A” ปัจจุบันได้มีดาวเทียมไทยคมทั้งหมด 3 ดวงคือมี ดาวเทียมไทยคม 2 และไทยคม 3 เจ้าของคือกลุ่มชินคอร์ป ซึ่งต่อมาได้ขายหุ้นให้กลุ่มเทมาเสก ของสิงค์โปร์ ดังนั้นเจ้าของเครือข่ายดาวเทียมไทยคมก็คือนายทุนจากสิงคโปร์

ที่มา : ผู้จัดการออนไลน์ 26 มกราคม 2550 และ http://techno.obec.go.th/

ดาวเทียมธีออส สำรวจทรัพยากรดวงแรกของไทย

ดาวเทียมธีออส สำรวจทรัพยากรดวงแรกของไทย
ดาวเทียมธีออส (THEOS : Thailand Earth Observation Satellite)
เป็นดาวเทียมสำรวจทรัพยากรธรรมชาติดวงแรกของประเทศไทย
มีมูลค่าการลงทุนกว่า 6,000 ล้านบาท
เป็นโครงการก่อสร้างแบบการค้าต่างตอบแทนพืชผลการเกษตรของไทยกับประเทศฝรั่งเศส
ได้มีกำหนดปล่อยขึ้นสู่วงโคจรในราวเดือน ต.ค.50
โดย ได้เลือกสถานที่ปล่อยดาวเทียมแล้ว ณ เมืองไบโคนัวร์ ประเทศคาซัคสถาน

ดาวเทียมดังกล่าวจะมีอายุการใช้งานขั้นต่ำสุด 5 ปี
เช่นเดียวกับดาวเทียมในลักษณะเดียวกันดวงอื่นๆ
แต่ก็เชื่อว่าจะยืดอายุการใช้งานให้นานถึง 10 ปีหรือมากกว่านั้นได้
ซึ่งต้องเสียค่าใช้จ่ายในการดูแลรักษาหลังการใช้งาน 5 ปีเพิ่มขึ้นบ้างแต่ไม่มากนัก

จะใช้ประโยชน์จากดาวเทียมธีอออสในด้านการสำรวจทรัพยากรธรรมชาติของประเทศ
อาทิ ป่าไม้ น้ำ พื้นที่การเกษตร และการประมง
ซึ่งจะต้องร่วมมือกับกระทรวงต่างๆ ที่เกี่ยวข้องด้วย
โดยจัดทำระบบและซอฟต์แวร์การใช้งานขึ้น
โดยเชื่อว่าซอฟต์แวร์ดังกล่าวจะสามารถนำไปปรับใช้
กับการบริหารงานภาพถ่ายดาวเทียมดวงอื่นๆ ของโลกได้ด้วย
รวมไปถึงการใช้ข้อมูลภาพถ่ายดาวเทียมธีออสไปประกอบกับภาพถ่ายภาคพื้นดิน
เพื่อใช้บริหารจัดการทรัพยากรน้ำให้มีความสะดวกและมีประสิทธิภาพสูงขึ้น

ทั้งนี้ ประธานกรรมการบริหาร สทอภ.ยังบอกด้วยว่า
หลังจากปล่อยดาวเทียมธีออสขึ้นสู่วงโคจรแล้ว
จะใช้เวลาตรวจดูความเรียบร้อยต่างๆ ประมาณ 3 เดือน
จึงจะเริ่มปฏิบัติงานได้เต็มประสิทธิภาพ หรือภายในสิ้นปี 50 นี้
โดยบริษัทคู่สัญญาของไทยคือ อีเอดีเอส แอสเตรียม (EADS Astrium)
ในชื่อใหม่คือ แอสเตรียม เอส.เอ.เอส. (Astrium S.A.S.)
จะเป็นผู้ออกค่าใช้จ่ายในการปล่อยยานทั้งหมด 600 ล้านบาท
โดยใช้จรวด “เน็ปเปอร์” (DNEPR) ของประเทศยูเครน เป็นจรวดนำส่ง

ที่มา : ผู้จัดการออนไลน์ 26 มกราคม 2550 และ http://techno.obec.go.th/

รายชื่อดาวเทียมตามการใช้งาน

รายชื่อดาวเทียมตามการใช้งาน
1. ดาวเทียมที่ใช้ในการสื่อสารแบบจุดต่อจุด เช่น PALAPA THAICOM
2. ดาวเทียมสื่อสารระหว่างดาวเทียม เช่น TDRS
3. ดาวเทียมเพื่อการสื่อสารเคลื่อนที่บนบก ในน้ำ และในอากาศ เช่น INMASAT
4. ดาวเทียมเพื่อการสื่อสารวิทยุกระจายเสียง และวิทยุโทรศัพท์ เช่น ASTRA
5. ดาวเทียมเพื่อการสำรวจโลก สำรวจทรัพย์ยากรธรรมชาติ เช่น LANDSAT
6. ดาวเทียมเพื่อการสำรวจอวกาศ เช่น METEOR EXPLORER
7. ดาวเทียมเพื่อการพยากรณ์อากาศ เช่น GMS NOAA 6-9
8. ดาวเทียมเพื่อการปฏิบัติในห้วงอวกาศ เช่น SPAS SKYLAB
9. ดาวเทียมเพื่อกิจการวิทยุสมัครเล่น เช่น JAS-1 JAS-2 AO-40
10. ดาวเทียมเพื่อการกำหนดตำแหน่ง เช่น NAVSTAR
11. ดาวเทียมเพื่อการนำร่องเรือ และ อากาศยาน เช่น TRANSIT COSMOS

ที่มา : http://th.wikipedia.org/wiki/

วันอังคารที่ 3 พฤศจิกายน พ.ศ. 2552

ประวัติของดาวเทียม


ประวัติและพัฒนาการของดาวเทียม GPS
ในศตวรรษที่ 20 ในการพัฒนาเครื่องส่งวิทยุทำให้เครื่องช่วยการเดินทางได้พัฒนาไป อีกขั้นเรียกว่า Radio beacons รวมทั้ง Loran และ Omega ในที่สุดเทคโนโลยีของดาวเทียมทำให้เครื่องช่วยการเดินทางและการหาตำแหน่งจะพิจารณาจากเส้นที่สัญญาณเดินทางผ่านด้วยการวัดของ Doppler ที่เคลื่อนที่ไป ซึ่งมีระบบ Transit เป็นระบบเครื่องช่วยการเดินเรือโดยอาศัยดาวเทียม ได้รับการคิดค้นสำเร็จในปี ค.ศ.1950 และใช้งานอยู่ 33ปี จึงได้ปลดประจำการไป ระบบ Transit ได้พัฒนามาให้ข้อมูลการหาตำแหน่งที่แน่นอนให้กับเรือดำน้ำ polaris ที่มีจรวดนำวิถี หลักการคือ การคาดการณ์โดยใช้ความถี่ Doppler ที่เปลี่ยนแปลงตำแหน่งไปจากดาวเทียม Sputnik ส่งโดยสหภาพโซเวียตในเดือนตุลาคม 1957 สัญญาณเปลี่ยนของ Doppler สามารถพิจารณาการโคจรของดาวเทียมใช้ข้อมูลที่จดเอาไว้ที่สถานีหนึ่งเมื่อดาวเทียมโคจรผ่านไป ระบบ Transit ประกอบด้วย ดาวเทียม 6 ดวงที่เกือบเป็นวงกลม การโคจรผ่านขั้วโลกที่ความสูง 1,075 กิโลเมตร ระยะเวลาของการหมุน 107 นาที การโคจรของดาวเทียม Transit จะแน่นอนกว่าโดยการติดตามจากสถานีพื้นโลกที่กำหนดไว้ ด้วยสภาพที่น่าพอใจความเร็วที่แน่นอนเป็น 35 ถึง 100 เมตร รอบต่อนาที ปัญหาของ Transit คือการครอบคลุมพื้นที่มีช่องว่างระหว่างกันมาก ผู้ใช้ต้องคำนวณโดยการ interpolate ตำแหน่งของตนเองระหว่างที่ดาวเทียมโคจรผ่านไป
ความสำเร็จของ Transit เป็นการกระตุ้นให้ทั้งกองทัพเรือและกองทัพอากาศของสหรัฐฯ พิจารณาระบบช่วยการเดินทางที่ก้าวหน้ากว่าเดิมและมีประสิทธิภาพยิ่งขึ้น ทางกระทรวงกลาโหมของสหรัฐฯ ได้ผลิตระบบการหาตำแหน่ง Navstar ทั่วโลก ซึ่งจะเอาไว้ในการระบุตำแหน่งการนำวิถีของจรวดทั้งทางบกและทางอากาศและยังสามารถบอกได้ว่ากองกำลังทหารอยู่ ณ ที่ใดของสนามรบและนั่นก็เป็นจุดเริ่มต้นของการผลิตคิดค้นระบบวิธีการระบุตำแหน่งบนพื้นโลก ซึ่งระบบ GPS จะขัดแย้งกับ Transit คือระบบ GPS ให้สัญญาณครอบคลุมพื้นที่ต่อเนื่องและให้ความถูกต้องและแม่นยำกว่าระบบเดิม ซึ่งได้ผลิตให้ดาวเทียมมีความทันสมัย ( Modernization) และเหมาะสมในการนำไปใช้งานต่างๆจนถึงปัจจุบันดาวเทียม GPS ได้ถูกสร้างขึ้นมาแล้วถึง 4 รุ่น คือ
รุ่นที่ 1 เรียกว่า Block I
รุ่นที่ 2 เรียกว่า Block II/IIA
รุ่นที่ 3 เรียกว่า Block IIR
รุ่นที่ 4 เรียกว่า Block IIF

ที่มา : http://wiki.nectec.or.th/ngiwiki/pub/Main/UserForm/GPS__Global_Positioning_System.doc

ประเภทของดาวเทียม

ประเภทของดาวเทียม
1. ดาวเทียมสื่อสาร
ดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา เรียกได้ว่าทำงานตลอด 24 ชม. ไม่มีวันหยุด เพื่อที่จะเชื่อมโยงเครือข่ายการสื่อสารของโลกเข้าไว้ด้วยกัน ดาวเทียมสื่อสารเมื่อถูกส่งเข้าสู่วงโคจร มันก็พร้อมที่จะทำงานได้ทันที มันจุส่งสัญญาณไปยังสถานีภาคพื้นดิน สถานีภาคพื้นดินจะรับสัญญาณโดยใช้อุปกรณ์ ที่เรียกว่า "Transponder" ซึ่งเป็นอุปกรณ์ที่ทำหน้าที่พักสัญญาณ แล้วกระจายสัญญาณไปยังจุดรับสัญญาณต่างๆ บนพื้นโลก ดาวเทียมสื่อสารสามารถส่งผ่านสัญญาณโทรศัพท์ ข้อมูลต่างๆ รวมถึงสัญญาณภาพโทรทัศน์ได้ไปยังทุกหนทุกแห่ง

2. ดาวเทียมสำรวจทรัพยากร
การใช้ดาวเทียมสำรวจทรัพยากรและสภาพแวดล้อมของโลก เป็นการผสมผสานระหว่างเทคโนโลยีการถ่ายภาพ และโทรคมนาคม โดยการทำงานของดาวเทียมสำรวจทรัพยากรจะใช้หลักการ สำรวจข้อมูลจากระยะไกล
หลักการที่สำคัญของดาวเทียมสำรวจทรัพยากร คือ Remote Sensing โดยใช้คลื่นแสงที่เป็นพลังงานแม่เหล็กไฟฟ้า (EME : Electro - Magnetic Energy) ทำหน้าที่เสมือนสื่อกลางส่งผ่านระหว่างวัตถุเป้าหมาย และอุปกรณ์บันทึกข้อมูล อุปกรณ์ถ่ายถาพที่ติดตั้งอยู่บนดาวเทียม มักจะได้รับการออกแบบให้มีความสามารถถ่ายภาพ และมีความหลากหลายในรายละเอียดของภาพได้อย่างเหมาะสม เพื่อประโยชน์ในการจำแนกประเภททรัพยากรที่สำคัญๆ
3. ดาวเทียมอุตุนิยมวิทยา
ดาวเทียมอุตุนิยมวิทยาเป็นดาวเทียมที่ให้ข้อมูลเกี่ยวกับสภาพภูมิอากาศด้วยภาพถ่ายเรดาร์ (Radar) และภาพถ่ายอินฟาเรด(Infared) เนื่องจากดาวเทียมอุตุนิยมวิทยาเป็นดาวเทียมสำรวจประเภทหนึ่งจึงมีอุปกรณ์บนดาวเทียมคล้ายกับดาวเทียมสำรวจทรัพยากร จะแตกต่างก็เพียงหน้าที่ การใช้งาน ดังนั้นดาวเทียมอุตุนิยมวิทยาจึงมีหลักการทำงานเช่นเดียวกับดาวเทียมสำรวจทรัพยากร กล่าวคือ อุปกรณ์สำรวจอุตุนิยมวิทยาบนดาวเทียมจะส่ง สัญญาณมายังเครื่องรับที่สถานีภาคพื้นดิน ซึ่งที่สถานีภาคพื้นดินนี้จะมีระบบรับสัญญาณแตกต่างกันไปตามดาวเทียมแต่ละดวง

4. ดาวเทียมบอกตำแหน่ง
ระบบหาตำแหน่งโดยใช้ดาวเทียม (Global Positioning Satellite System - GPS) ถูกพัฒนาโดยทหารสำหรับการใช้งานในกระทรวงกลาโหม ของสหรัฐอเมริกา ซึ่งในปัจจุบันได้มีการนำมาใช้งานในเชิงพาณิชย์ โดยใช้เป็นระบบนำร่องให้กับเครื่องบิน เมื่อดาวเทียมที่ใช้กับระบบ GPS ขยายตัวมากขึ้น จึงมีพื้นที่การครอบคลุมมากขึ้น และได้มีการนำมาประยุกต์ใช้งานอย่างกว้างขวาง เช่น การนำร่องให้เรือเดินสมุทรพาณิชย์ในบริเวณที่ระบบนำร่องภาคพื้นดิน ไม่สามารถใช้ได้

5. ดาวเทียมประเภทอื่นๆ
-ดาวเทียมสมุทรศาสตร์
เราสามารถนำดาวเทียมไปใช้กับงานได้หลากหลายสาขา งานทางด้านสำรวจทางทะเลก็เป็นอีกสาขาหนึ่งที่ดาวเทียมได้เข้าไปมีบทบาทปัจจุบันนักวิทยาศาสตร์ทางทะเล และนักชีววิทยาทางทะเลสามารถตรวจจับความ เคลื่อนไหวของทุกสรรพสิ่งในท้องทะเลได้ ก็ด้วยการใช้งานจากดาวเทียมนั่นเอง โดยนำข้อมูลที่ได้จากดาวเทียมสำรวจทางทะเลมาตรวจวิเคราะห์สภาพแวดล้อม ลักษณะสิ่งมีชีวิต ความแปรปรวนของคลื่นลมและกระแสน้ำ จนกระทั่งได้รายงานสรุปสภาพทางทะเลที่สมบูรณ์
-ดาวเทียมสำรวจอวกาศ
ดาวเทียมเพื่อการสำรวจอวกาศเป็นเทคโนโลยีที่ยังใหม่มาก โดยดาวเทียมประเภทนี้จะถูกนำขึ้นไปสู่วงโคจรที่สูงกว่าดาวเทียมประเภทอื่น ๆ ลึกเข้าไปในอวกาศ ดังนั้นดาวเทียมสำรวจอวกาศจึงให้ภาพที่ไร้สิ่งกีดขวางใด ๆ ไม่มีชั้นบรรยากาศของโลกมากั้น ดาวเทียมสำรวจอวกาศบางดวงก็จะนำอุปกรณ์ตรวจจับ และบันทึกคลื่นแม่เหล็กไฟฟ้า บางดวงก็จะมีหน้าที่ตรวจจับและบันทึกรังสีอัลตร้าไวโอเล็ต
-ดาวเทียมจารกรรม
ดาวเทียมที่น่าสนใจอีกประเภทหนึ่งก็คือ ดาวเทียมเพื่อการจารกรรมหรือสอดแนม ซึ่งแบ่งออกเป็น 4 ชนิดใหญ่ ๆ ด้วยกัน แต่ที่นิยมมากที่สุดคือประเภทที่ใช้เพื่อการลาด ตระเวน โดยมีการติดกล้องเพื่อใช้ในการถ่ายภาพพิเศษ สามารถสืบหาตำแหน่งและรายละเอียดเฉพาะพื้นที่ที่ต้องการได้ ดาวเทียมจะมีอุปกรณ์ตรวจจับ คลื่นวัตถุด้วยเรด้าร์และ แสงอินฟราเรด ซึ่งสามารถตรวจจับได้ทั้งในที่มืด หรือที่ที่ถูกพรางตาไว้


สิ่งอ้างอิง
http://hs8iye.igetweb.com/index.php?mo=3&art=121890
http://th.wikipedia.org/wiki/
http://www.gistda.or.th/Gistda/HtmlGistda/Html/HtmlHisSat/HisSatilliteSurver

นายนาทนคร เกิดเสม 49280134 หมู่770

วงโคจรดาวเทียม


วงโคจรของดาวเทียม
วงโคจรดาวเทียม (Satellite Orbit) เมื่อแบ่งตามระยะความสูง (Altitude) จากพื้นโลกแบ่งเป็น 3 ระยะคือ

1. วงโคจรระยะต่ำ (Low Earth Orbit "LEO")อยู่สูงจากพื้นโลกไม่เกิน 1,000 กม. ใช้ในการสังเกตการณ์ สำรวจสภาวะแวดล้อม, ถ่ายภาพ ไม่สามารถใช้งานครอบคลุมบริเวณใดบริเวณหนึ่งได้ตลอดเวลา เพราะมีความเร็วในการเคลื่อนที่สูง แต่จะสามารถบันทึกภาพคลุมพื้นที่ตามเส้นทางวงโคจรที่ผ่านไป ตามที่สถานีภาคพื้นดินจะกำหนดเส้นทางโคจรอยู่ในแนวขั้วโลก (Polar Orbit) ดาวเทียมวงโคจรระยะต่ำขนาดใหญ่บางดวงสามารถมองเห็นได้ด้วยตาเปล่าในเวลาค่ำ หรือก่อนสว่าง เพราะดาวเทียมจะสว่างเป็นจุดเล็ก ๆ เคลื่อนที่ผ่านในแนวนอนอย่างรวดเร็ว
2. วงโคจรระยะปานกลาง (Medium Earth Orbit "MEO")อยู่ที่ระยะความสูงตั้งแต่ 1,000 กม. ขึ้นไป ส่วนใหญ่ใช้ในด้านอุตุนิยมวิทยา และสามารถใช้ในการติดต่อสื่อสารเฉพาะพื้นที่ได้ แต่หากจะติดต่อให้ครอบคลุมทั่วโลกจะต้องใช้ดาวเทียมหลายดวงในการส่งผ่าน
3. วงโคจรประจำที่ (Geostationary Earth Orbit "GEO")เป็นดาวเทียมเพื่อการสื่อสารเป็นส่วนใหญ่ อยู่สูงจากพื้นโลกประมาณ 35,780 กม. เส้นทางโคจรอยู่ในแนวเส้นศูนย์สูตร (Equatorial Orbit) ดาวเทียมจะหมุนรอบโลกด้วยความเร็วเชิงมุมเท่ากับโลกหมุนรอบตัวเองทำให้ดู เหมือนลอยนิ่งอยู่เหนือ จุดจุดหนึ่งบนโลกตลอดเวลา (เรียกทั่ว ๆ ไปว่า "ดาวเทียมค้างฟ้า")ดาวเทียมจะอยู่กับที่เมื่อเทียบกับโลกมีวงโคจรอยู่ในระนาบเดียวกันกับ เส้นศูนย์สูตร อยู่สูงจากพื้นโลกประมาณ 35,786 กม. วงโคจรพิเศษนี้เรียกว่า “วงโคจรค้างฟ้า” หรือ “วงโคจรคลาร์ก” (Clarke Belt) เพื่อเป็นเกียรติแก่นาย อาร์เทอร์ ซี. คลาร์ก ผู้นำเสนอแนวคิดเกี่ยวกับวงโคจรนี้ เมื่อ เดือนตุลาคม ค.ศ. 1945วงโคจรคลาร์ก เป็นวงโคจรในระนาบเส้นศูนย์สูตร (EQUATOR) ที่มีความสูงเป็นระยะที่ทำให้ดาวเทียมที่เคลื่อนที่ด้วยความเร็วเชิงมุม เท่ากันกับการหมุนของ โลกแล้วทำให้เกิดแรงเหวี่ยงหนีศูนย์กลางมีค่าพอดีกับค่าแรงดึงดูดของโลกพอดี เป็นผลให้ดาวเทียมดูเหมือนคงอยู่กับที่ ณ ระดับความสูงนี้ ดาวเทียมค้างฟ้า ส่วนใหญ่ใช้ในการสื่อสารระหว่างประเทศและภายในประเทศ เช่น ดาวเทียมอนุกรม อินเทลแซต ๆลๆ


ที่มา : http://hs8iye.igetweb.com/index.php?mo=3&art=121890
http://th.wikipedia.org/wiki/
http://www.gistda.or.th/Gistda/HtmlGistda/Html/HtmlHisSat/HisSatilliteSurver

นายนาทนคร เกิดเสม 49280134 หมู่770

ส่วนประกอบของดาวเทียม

ส่วนประกอบของดาวเทียม
ดาวเทียมเป็นเครื่องยนต์กลไกที่ซับซ้อนมาก ส่วนประกอบแต่ละส่วนถูกออกแบบอย่างประณีต และมีราคาแพง m ดาวเทียมดวงหนึ่งๆ จะต้องทำงาน โดยไม่มีคนควบคุมโคจรด้วยความเร็วที่สูงพอที่จะหนี จากแรงดึงดูดของโลกได้ ผู้สร้างดาวเทียมจะพยายามออกแบบให้ชิ้นส่วนต่างๆ ทำงานได้อย่างประสิทธิภาพที่สุด และราคาไม่แพงมาก ดาวเทียมมีส่วนประกอบมากมาย แต่ละส่วนจะมีระบบควบคุมการทำงานแยกย่อยกันไป ดาวเทียมจะมีอุปกรณ์เพื่อควบคุมให้ระบบต่างๆ ทำงานร่วมกัน ระบบย่อยๆ แต่ละอย่างต่างก็มีหน้าที่การทำงานเฉพาะ
1. โครงสร้างดาวเทียม เป็นส่วนประกอบที่สำคัญมาก โครงจะมีน้ำหนักประมาณ 15 - 25% ของน้ำหนักรวม ดังนั้น จึงจำเป็นต้องเลือกวัสดุที่มีน้ำหนักเบา และต้องไม่เกิดการสั่นมากเกินที่กำหนด หากได้รับสัญญาณที่มีความถี่ หรือความสูงของคลื่นมากๆ (amptitude)

2. ระบบเครื่องยนต์ ซึ่งเรียกว่า "aerospike" อาศัยหลักการทำงานคล้ายกับเครื่องอัดอากาศ และปล่อยออกทางปลายท่อ ซึ่งระบบดังกล่าวจะทำงานได้ดีในสภาพสูญญากาศ ซึ่งต้องพิจารณาถึงน้ำหนักบรรทุกของดาวเทียมด้วย
3. ระบบพลังงาน ทำหน้าที่ผลิตพลังงาน และกักเก็บไว้เพื่อแจกจ่ายไปยังระบบไฟฟ้าของดาวเทียม โดยมีแผงรับพลังงาน (Solar Cell) ไว้รับพลังงานจากแสงอาทิตย์เพื่อเปลี่ยนเป็นพลังงานไฟฟ้า ให้ดาวเทียม แต่ในบางกรณีอาจใช้พลังงานนิวเคลียร์แทน
4. ระบบควบคุมและบังคับ ประกอบด้วย คอมพิวเตอร์ที่เก็บรวมรวมข้อมูล และประมวลผลคำสั่งต่างๆ ที่ได้รับจากส่วนควบคุมบนโลก โดยมีอุปกรณ์รับส่งสัญญาณ (Radar System) เพื่อใช้ในการติดต่อสื่อสาร
5. ระบบสื่อสารและนำทาง มีอุปกรณ์ตรวจจับความร้อน ซึ่งจะทำงาน โดยแผงวงจรควบคุมอัตโนมัติ
6. อุปกรณ์ควบคุมระดับความสูง เพื่อรักษาระดับความสูงให้สัมพันธ์กันระหว่างพื้นโลก และดวงอาทิตย์ หรือเพื่อรักษาระดับให้ดาวเทียมสามารถโคจรอยู่ได้
7. เครื่องมือบอกตำแหน่ง เพื่อกำหนดการเคลื่อนที่ นอกจากนี้ยังมีส่วนย่อยๆ อีกบางส่วนที่จะทำงานหลังจาก ได้รับการกระตุ้นบางอย่าง เช่น ทำงานเมื่อได้รับสัญญาณ สะท้อนจากวัตถุบางชนิด หรือทำงานเมื่อได้รับลำแสงรังสี ฯลฯ


ชิ้นส่วนต่างๆของดาวเทียมได้ถูกทดสอบอย่างละเอียดส่วนประกอบต่างๆถูกออกแบบสร้างและทดสอบ ใช้งานอย่างอิสระ ส่วนต่าง ๆได้ถูกนำมาประกอบเข้าด้วยกัน และทดสอบอย่างละเอียดครั้งภายใต้สภาวะที่เสมือนอยู่ในอวกาศก่อนที่มัน จะถูกปล่อยขึ้นไปโคจร ดาวเทียมจำนวนไม่น้อยที่ต้องนำมาปรับปรุงอีกเล็กน้อย ก่อนที่พวกมันจะสามารถทำงานได้ เพราะว่าหากปล่อยดาวเทียมขึ้นสู่วงโคจรแล้ว เราจะไม่สามารถปรับปรุงอะไรได้ และดาวเทียมต้องทำงานอีกเป็นระยะเวลานาน ดาวเทียมส่วนมากจะถูกนำขึ้นไปพร้อมกันกับจรวด ซึ่งตัวจรวดจะตกลงสู่มหาสมุทรหลังจากที่เชื้อเพลิงหมด




วันอาทิตย์ที่ 1 พฤศจิกายน พ.ศ. 2552

ดาวเทียม

ดาวเทียม


ดาวเทียม คือ วัตถุที่มนุษย์สร้างขึ้นไปโคจรรอบโลก เพื่อวัตถุประสงค์ทางด้านการวิจัยทางวิทยาศาสตร์ การรายงานสภาพอากาศ หรือเพื่อการลาดตระเวนทางทหาร ดาวเทียมเพื่อการวิจัยทางวิทยาศาสตร์ จะทำหน้าที่ในการ สังเกตการณ์สภาพของอวกาศ โลก ดวงอาทิตย์ ดวงจันทร์ และดาวอื่นๆ รวมถึงวัตถุประหลาดต่างๆ ในกาแลกซี่ หรือระบบสุริยจักรวาล ..
ดาวเทียม ประเภทของดาวเทียมบางประเภท เช่น
1. ดาวเทียมอุตุนิยมวิทยา
2. ดาวเทียมสังเกตการณ์ดาราศาสตร์
3. ดาวเทียมชีวภาพ
4. ดาวเทียมทางการทหาร
5. ดาวเทียมสำรวจทรัพยากรโลก
6. ดาวเทียมสื่อสารโทรคมนาคม
7. ดาวเทียมสังเกตการณ์ดวงอาทิตย์

8. ดาวเทียมห้องทดลองทางวิทยาศาสตร์ เช่น ห้องทดลอง LDEF ซึ่งยานขนส่งอวกาศนำไปปล่อยในอวกาศตั้งแต่เดือนเมษายน 2527 และนำกลับลงมา เมื่อ 12 ม.ค. 2533 โครงการทดลองนำเมล็ดมะเขือเทศ 5 ถุงใหญ่ หลังกลับมาแล้วจ่ายเมล็ดมะเขือเทศ 2 แบบ ให้ศึกษาคือที่นำมาจากอวกาศเปรียบเทียบกับที่ผิวโลกศึกษาการเจริญเติบโตของเมล็ด มะเขือเทศทั้งสอง

การส่งดาวเทียมและยานอวกาศจากพื้นโลกขึ้นสู่อวกาศ ต้องต่อสู้กับแรงดึงดูดของโลก ดาวเทียมและยานอวกาศต้องเอาชนะ แรงดึงดูดของโลก โดยอาศัยจรวดที่มีแรงขับดันและความเร็วสูง ความเร็วของจรวดต้องมากกว่า 7.91 กิโลเมตรต่อวินาที ยานอวกาศจึงจะสามารถขึ้นไปสู่อวกาศและโคจรรอบโลกในระดับต่ำที่สุด (0 กิโลเมตร) ได้ ถ้าความเร็วมากว่านี้ ยานจะขึ้นไป โคจรอยู่ในระดับที่สูงกว่า เช่น ถ้าหากความเร็วจรวดเป็น 8.66 กิโลเมตรต่อวินาที ยานจะขึ้นไปได้สูง 1,609 กิโลเมตร ถ้าหากจะให้ ยานหนีออกไปโคจรรอบดวงอาทิตย์ จรวดที่พายานออกไปต้องมีความเร็วที่ผิวโลกมากกว่า 11.2 กิโลเมตรต่อวินาที ซึ่งเรียกว่า ความเร็วหลุดพ้น (Escape Velocity)หรือความเร็วผละหนีความเร็วหลุดพ้นจากโลกจะลดต่ำลงเมื่อห่างจากโลกมากขึ้น ดังตารางความสูงจากผิวโลกและความเร็วผละหนี


ที่มา : http://learn.chanpradit.ac.th/nuch/nudee/H1.html